Exercise 4

1. Find the interior points and boundary points of the following sets:
(a) $E_{1}=\{(x, y): x \in[0, a], y \in[0, b]\}$.
(b) $E_{2}=\left\{(x, y, z): z>x^{2}+y^{2}-1\right\}$.
(c) $E_{3}=\left\{(x, y, z): 1<x^{2}+y^{2}+z^{2} \leq 4\right\}$.
(d) $E_{4}=\{(x, y): x \in[0,1]\}$.
(e) $E_{5}=\{(x, y): x, y \in \mathbb{Z}\}$.
(f) $E_{6}=\left\{(x, y): \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\right\}, \quad a, b>0$.

The determine whether these sets are open, closed, or compact. A set is compact if it is closed and bounded.
2. Let A and B be open sets in \mathbb{R}^{n}. Show that
(a) $A \bigcup B$ is open.
(b) $A \bigcap B$ is open.
3. (a) Show that $(a, b),-\infty \leq a<b \leq \infty$, is open.
(b) Show that $[a, b],-\infty<a \leq b<\infty$, is open. Note that it implies that the singleton set $\{a\}$ is closed.
4. * Prove that F is a closed set in \mathbb{R}^{n} if and only if every convergent sequence in F has its limit in F.
5. * Prove that whenever F is a closed set containing E, then it must also contain \bar{E}. It shows that the closure of a set is the smallest closed set containing this set.
6. Study the limit of the following functions at $(0,0)$.
(a)

$$
f(x, y)=\frac{x^{2} y^{2}}{|x|+y^{2}}
$$

(b)

$$
g(x, y)=\frac{\sin x y}{x^{2}+y^{2}}
$$

(c)

$$
h(x, y)=y \log \left(x^{2}+|y|\right) .
$$

Hint: In (c) examine the sets $\left\{(x, y): y \geq x^{2}\right\}$ and $\left\{(x, y): y<x^{2}\right\}$ separately.
7. Find the iterated limits and limit of the function

$$
h(x, y)=\frac{x-y}{x+y}
$$

at $(0,0)$.
8. Consider the function

$$
F(x, y)=\frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}}
$$

Show that

$$
\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} F(x, y)=\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} F(x, y)=0
$$

but

$$
\lim _{(x, y) \rightarrow(0,0)} F(x, y)
$$

does not exist.
9. Describe the natural domains of the functions determined by the following formulas and then study the continuity of these functions.
(a) $\frac{1}{x^{2}+y^{2}-1}$,
(b) $\log \left(y-x^{2}\right)$,
(c) $\arcsin \frac{x}{y}$,
(d) $\exp \left(\frac{-1}{x^{2}+y^{2}+z^{2}}\right)$.

Here arcsin is the branch of the inverse of the sine function from $[-1,1]$ to $[-\pi / 2, \pi / 2]$.
10. Use Theorem 4.10 to determine whether the following sets are open or closed:
(a) $S_{1}=\left\{x \in \mathbb{R}^{n}: p(x)=0\right\}$ where p is a polynomial.
(b) $S_{2}=\left\{(x, y) \in \mathbb{R}^{2}: \cos x^{2}-\sin ^{3} x y \leq 1\right\}$.
(c) $S_{3}=\left\{(x, y, z): x^{2}+y^{2}<\sin (x+z)<28 z^{2}\right\}$.

