Exercise 4

- 1. Find the interior points and boundary points of the following sets:
 - $\begin{array}{ll} \text{(a)} & E_1 = \left\{ (x,y): \ x \in [0,a], y \in [0,b] \right\} \,. \\ \text{(b)} & E_2 = \left\{ (x,y,z): \ z > x^2 + y^2 1 \right\} \,. \\ \text{(c)} & E_3 = \left\{ (x,y,z): \ 1 < x^2 + y^2 + z^2 \le 4 \right\} \,. \\ \text{(d)} & E_4 = \left\{ (x,y): \ x \in [0,1] \right\} \,. \\ \text{(e)} & E_5 = \left\{ (x,y): x, y \in \mathbb{Z} \right\} \,. \\ \text{(f)} & E_6 = \left\{ (x,y): \ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right\}, \quad a,b > 0 \,. \end{array}$

The determine whether these sets are open, closed, or compact. A set is compact if it is closed and bounded.

- 2. Let A and B be open sets in \mathbb{R}^n . Show that
 - (a) $A \bigcup B$ is open.
 - (b) $A \cap B$ is open.
- 3. (a) Show that $(a, b), -\infty \le a < b \le \infty$, is open.
 - (b) Show that $[a, b], -\infty < a \le b < \infty$, is open. Note that it implies that the singleton set $\{a\}$ is closed.
- 4. * Prove that F is a closed set in \mathbb{R}^n if and only if every convergent sequence in F has its limit in F.
- 5. * Prove that whenever F is a closed set containing E, then it must also contain \overline{E} . It shows that the closure of a set is the smallest closed set containing this set.
- 6. Study the limit of the following functions at (0,0).

$$f(x,y) = rac{x^2y^2}{|x| + y^2} \; .$$

(b)

(a)

$$g(x,y) = \frac{\sin xy}{x^2 + y^2} \; .$$

 $h(x,y) = y \log(x^2 + |y|) .$

(c)

Hint: In (c) examine the sets
$$\{(x, y) : y \ge x^2\}$$
 and $\{(x, y) : y < x^2\}$ separately.

7. Find the iterated limits and limit of the function

$$h(x,y) = \frac{x-y}{x+y}$$

at (0, 0).

8. Consider the function

$$F(x,y) = \frac{x^2 y^2}{x^2 y^2 + (x-y)^2} \; .$$

Show that

$$\lim_{y\to 0}\lim_{x\to 0}F(x,y)=\lim_{x\to 0}\lim_{y\to 0}F(x,y)=0\ ,$$

but

$$\lim_{(x,y)\to(0,0)}F(x,y)$$

does not exist.

9. Describe the natural domains of the functions determined by the following formulas and then study the continuity of these functions.

(a)
$$\frac{1}{x^2 + y^2 - 1}$$
,
(b) $\log(y - x^2)$,
(c) $\arcsin \frac{x}{y}$,
(d) $\exp\left(\frac{-1}{x^2 + y^2 + z^2}\right)$

Here arcsin is the branch of the inverse of the sine function from [-1, 1] to $[-\pi/2, \pi/2]$.

- 10. Use Theorem 4.10 to determine whether the following sets are open or closed:
 - (a) $S_1 = \{x \in \mathbb{R}^n : p(x) = 0\}$ where p is a polynomial.
 - (b) $S_2 = \{(x, y) \in \mathbb{R}^2 : \cos x^2 \sin^3 xy \le 1\}.$
 - (c) $S_3 = \{(x, y, z): x^2 + y^2 < \sin(x + z) < 28z^2\}.$

•